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Heuristic approach to the strong-coupling regime of the Kardar-Parisi-Zhang equation
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We propose a heuristic approach of treating the strong-coupling regime of the Kardar-Parisit(RRahg
equation. The method, which suggests that=4 is the upper critical dimension of the KPZ equation, enables
one to use the expansion belovd=4 substrate dimensions to compute the critical exponents in the strong-
coupling regime. We compute the dynamic exponerind the roughness exponeptto the first order in
e=4—d asz=2-(4-d)/5 andy=(4—d)/5. [S1063-651X97)50705-1

PACS numbgs): 05.40:+j, 64.60.Ak, 64.60.Ht, 68.45.v

The nonequilibrium dynamics of surfaces continues to atapproach useless. The strong-coupling regime is so far ana-
tract large interest over the recent yedfsr reviews see lytically poorly understoodfor recent studies sdd.0—20).
[1-4]). These systems exhibit critical properties similar toReferences[12,13,1§ employ mode-coupling techniques,
those of equilibrium critical phenomena. A phenomenologi-yield numerical estimates of the dynamical exponents and
cal equation describing the dynamics of surfaces is th%uggestduc slightly less than four or equals fo[it8]. Ref-

Kardar-Parisi-ZhangKPZ) equation[5] erenceg20] and[19] (see alsd4], Sec.6.4.1V suggest that
oh N d,.=4.
= voV2h+ E(Vh)2+ n(x,t), (1) In the present paper we will present a heuristic approach

of treating the strong-coupling regime of the KPZ equation
and will compute the critical exponentsand y below four
dimensions by using the expansion to first order in
e=4—d. The basic idea of this approach is based on the
suggestion that the increase of the effective coupling con-

whereh(x,t) is a single-valued function, which describes the
height profile above a basdtdimensional substratein the
comoving coordinate system, is responsible for the lateral
growth, v is the surface tension, and the noigéx,t) has a

Gaussian distribution with7(x,t))=0, and stant of Eq.(1), g=DA?v, 3, under renormalization in the
vicinity of d=2 is due to the fact that fod>2 the critical
(n(x,H) (X' 1)) =2Do8%x—x") S(t—t'). (20 value of\, ., becomes a relevant quantity. The necessity

) . ) , of generation of\. in treating Eq.(1) is the reason of the
Equation(1) is now widely accepted to describe growth ;e of the standard RG technique in handling the strong-
processes such as Eden model, growth by ballistic depOSEoupling regime of the KPZ equation. Fde2 the pertur-

ggpr'edetf(l:ﬁiJsr}eBu}:PezereguL?;;?grﬁéi) aéfsosirgﬁ\ﬁdtrg)nsraggoirr?lybation expansions explicitly depend on the ultraviolet cutoff
9 q ' b P lo. We suggest that this dependencel gnwhich is a local

the driven-diffusion equatiof], the directed polymer prob- o .
lem in disordered megiEB] e?ngl the behavior?)f f>llux Iinpes in quantity, is responsible for the appearance of the threshold
' value \., which is also expected to be a local quantity. In

Su%?]rgor?(g;ﬁtt(—)rrg]éht correlation function has fd=2 the theblight of these.ideas it irs] terr;}pting t?f rgorgaréize the ;)err{
following scaling form: tur atlon.expansmns. so that t e cuto ependence o the
perturbation expansions appearing &2 will be con-
((h(x,t)—h(x" 1)) =|x—x"|2XF(|t—t'|/|[x—X"|?), verted to a threshold of the coupling constg2t]. The ap-
proach proposed consists of two steps. The first step consists
in carrying out the renormalization of the perturbation ex-
wherey andz are the roughness and the dynamic exponentgansions in the vicinity ofl=2. Using a special matching
respectively. In the rough phase the exponents obey the scalendition, which is a heuristic one and is introduced by hand,
ing relation y+z=2, which follows from the invariance of enables one to reorganize the perturbation expansions, so
Eq. (1) with respect to an infinitesimal tilting of the surface that the pole of the effective coupling constant disappears.
h—h+ ex, x—x+\et [5]. Ford>2 there are two distinct Instead to diverge at a finite length, the effective coupling
regimes. ForA<X\., the interface is smooth, while for constant behaves as the square of an infrared le(fgth
A>\. it is rough and is expected to obey the scaling [@v  d>2, whenk>X\,). This behavior of the effective coupling
with the nontrivial roughness exponeptThe scaling behav- constant results, first, in shifting the critical dimension from
ior for both equilibrium and dynamical phenomena far frombeing initially d=2 to d=4. Second, the effective coupling
equilibrium is usually described by using the renormalizationconstant yields the desired thresholddofor d>2 and the
group (RG) method. However, RG method fails to describe expansion parameter in the rough phase becomes propor-
the strong-coupling regime of the KPZ equation. The RGtional to 149, with | being an infrared length. The second
analysis of Eq(1) up to the one-loop order in the vicinity of step consists in performing the RG analysis of these pertur-
d=2 yields the effective coupling constant, which increasedation series in the vicinity ol=4. The possibility for car-
under renormalization and seems to make the perturbatiorying out thee expansion ind<4 substrate dimensions is
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due to the fact thafi) the coupling constant does depend onlin this senseg@8) is a generalized matching condition. The
the length as*~ 9, and(ii) the regularized parts of perturba- form of Eq.(8) is dictated by demanding that the time has to
tion expansions contain 1/(4d) poles. The importance of be involved in Eq(8) as 1t, due to the fact that at the initial
1/(4—d) poles for the strong-coupling regime was previ- stage of the growth? is proportional tovyt. This circum-
ously emphasized ifil6] and[17]. The study of the singu- stance selects E¢B) among the more general matching con-
larities at 4-d and their consequences for the rougheningdition, I,;”:I‘“+Ic‘2, n=2, 3, ...,which, of course, for

transition has been treated [i&3] within the picture of di- n+2 would lead to different conclusions. Howevart 2 is

rected polymel([_)P) _by using t_he_ replica method. inconsistent with 1/(4-d) poles in Eqs(4) and(5) as it will
The renormalization prescriptions of the parameters enter-

. X X be discussed below. The quanli(,yl in Eq. (8) can be iden-
:rge Eq.(1) can be obtained in a standard marf&:8,11 and tified with an external momentum, the inverse size of the

system, etc. Equatiof8) does not contradict the perturbation
theory on small scaled (*>1_%). Whenl_*+0, | will be-

2—-dTI'(2—-d/2) g come in general irrelevant fdr— . It turns out that a spe-
v=vo| 1+ 75 55 % ) : (4)  cial choice ofl ; in Egs.(7) and(8) gives the expected thresh-
old for the coupling constant fod>2 and has the

consequence that the lengthremains relevant fot—co.
1 Inserting Eq.(8) into Eg. (7) and demanding that the de-

D=D, 1+ngolz‘d nominator in Eq.(7) behaves linear i =2 for small | =2

results in
1I(2-dR)-1
5 1=z 9 ] (5 D=2Do/(goB' 14912, 9)

where in deriving Eq(9) we have taken into account that
N =N, (6)  ¥p/B'=1. The crossover length, is obtained in different
dimensions as

where go=[2/(47)¥?]Do\?/v3. The lengthl in Egs. (4)

_ ' 1/(2—d)
and (5) plays the role of a cutoff at the lower limit of the [(2=d)/(B"o)] , d=2

integral, [ 1/(k?+1~2), appearing in the one-loop correction l=| lo&XdM(B'go)], d=2 ,
to v andD. Depending on the conditioriscan be identified I(d—2)(g-t—gg HIME-2) - g>2
with (vot)*2 the inverse external momentum at which the B (9 =80 )} (10)

renormalization is performed, the size of the system, etc.
In carrying out the renormalization in the vicinity of \here g.=[(d—2)/8']1372 is the threshold value of the

d=2 only the second term on the right-hand side of &)1.  coupling constant. It is supposed that in Etp) for d>2 the
has to be taken into account. The result of the integration Of:onditiongo>gc is fulfilled.

the RG equation fob from the cutoffl, to the cutoffl ,, is Due to the use of the matching conditig8), the UV

regularized perturbation expansions are reorganized in such a
B L 2—d_12—dvy— /8’ way that a threshold of the bare coupling constggicon-
D=Do{1-[1/(2=d)]goB'(It; "~ 15 D}~ 70", (7) trolling the behavior of the interface fat>2 explicitly en-
ters the perturbation expansions. The threshold value of the
where 8’ =1/4 andyp, = 1/4. We note that the effective cou- bare coupling constarg, is determined by the microscopic
pling constanig behaves in the same way Bs The ultra-  cutoff |,. The effective coupling constargz)\zD/vg be-
violet cutoff |, introduced in Eq(7) enables one to extend haves like D and scales with the infrared length as
Eq. (7) for d=2. g~D~12. The quadratic dependence of the coupling con-
The crucial point of our approach to treat the strong-stant on the length has the consequence that the critical
coupling regime consists in the use of the following match-dimension is shifted tal=4. This follows from the consid-
ing condition for the length,, in Eq. (7): eration of the dimensionless coupling constant
uo=(\2D/v3)I1?79, which results after using Eq(9) in
P uo=(1/1,)*"9%. For go<g. andd>2 there is no a solution
I =1"+1c %, ®  for I, obeying the condition that the denominator in Ef).
behaves linear id~2 for small | 2. This results in irrel-
wherel is the relevant infrared length of the problem. For aevancy of the nonlinear term in Eql) for d>2 in the
DP in the presence of an extended defect @).can be smooth phasg,<g.. At the transition,go=9., the expo-
legitimated in a rigorous waf24]. It is known that in order nents are given by.=2 andx.=0 [25-27,11,1F. This is
to study the critical phenomena by using the RG method it iglue to the fact that at the transition the effective coupling
necessary to use a conditigmatching conditiop giving a constantuy=(1/1.)*"¢ is zero, since the crossover lendth
relation between the final length, appearing in the effective is infinite. Slightly above the transition the crossover length
parameters of UV regularized theory and the relevant infral, behaves for 2 d<4 according to Eq.(10) as
red length of the problem. The information over the infraredl .~|go— g~ ¥“~2), which agrees with the behavior of the
behavior is put always into the matching condition by hand.correlation length below the transitig@5,11].
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We note that fod>2 the crossover length and conse- z=2—(4—d)/5. (14
quently the effective coupling constang has a finite limit
for go—. In terms of the DP picture in a disordered me-
dium g, is inversely proportional to the temperature. TheThe roughness exponent can be obtained from the relation
independence of, on g, for largeg, means that the prop- y+z=2, which is exact, or from the expression
erties of the surface do not depend sensitively on temperatugy=4—d— (yp+ y,)u* [28]. The result is
at low temperatures, the prediction which is quite natural to
be expected26].

We now will compute the critical exponents in the strong-
coupling regime by using the RG method. From Ed$.and
(5) we see that the regular parts of one loop corrections to
v andD contain 1/(4-d) poles. Due to this and the circum-
stance that the coupling constant behaved a$ it is tempt-
ing to perform the renormalization of the perturbation expan-
sions in the vicinity ofd=4. Note the consistency of the
shift of the critical dimension due to E() to d,,.=4, which B=(4—d)/(6+d). (16)
is the consequence of the use of the matching cond{Ban
with the 1/(4—d) poles in the perturbation expansion. The
procedure used depends on the assumption that the crossoverThe exponents given by Egél4)—(16) are obtained to
to the strong-coupling regime is governed by the pdids ordere=4—d. Ind=1 Eq.(14) gives the value 1.4, instead
and(5) evaluated at the Gaussian fixed point. A careful studyof the exact result=3/2. The latter is due to the fluctuation-
of the shift 2-d—4—d and its consequence on the potential dissipation theoreri29], which is valid only ind=1. From
change of the prefactors in front of 1{4d) poles in Egs. this we expect that the exponents computed to osddw not
(4) and (5), which are responsible for the strong-coupling necessarily give the exact valuedr=1. The situation is to
exponents, is necessary. The effective coupling constarsome extent similar to the problem of the anomalous diffu-
uo=(l/1s)*"9 becomes now the bare coupling constant ofsion of a Brownian particle in disordered media. Thex-
the regularized perturbation expansions. According tgpansion[30] does not give ind=1 the exact Sinai'§31]
Eqs(4)—(6), the renormalization ofiy is due to the renor- result. The roughness of the directed polymiet,1/z, gives
malization ofD and v. The renormalized coupling constant in d=2 according to Eq(14) the value 5/8, which agrees
u is expressed through and v in the same way ag  well with existing prediction$1] and[4], Sec.6.4. The value
through go, i.e., u=(D/Dg)/(v/vo)®)(I/1.)*" % The last of the 3 exponentird=2 (8= 1/4), which follows from Eq.
term in Eq. (5) is negative, that means th&t decreases (16), is close to the valugg=0.24 obtained in simulations
under renormalization. Taking into account thaincreases [32-37. Taking into account that Eq16) is only thee
under renormalization, we see that the dimensionless effecesult, the agreement with simulations has to be considered

x=(4—d)/5. (15)

The B exponentB= x/z is obtained as

tive coupling constanti has a fixed-point value. as very good. Ird=3 Eq.(16) gives the value 1/9, which is
The differential equations of the RG f@ and v are  smaller than the values obtained in numerical simulations
obtained from Eqs(4) and(5) as [33,35, and that given by the analytical formula of Kim-

Kosterlitz[38]. We do not have an explanation for this dis-
crepancy. Notice that simulatioi82,33 give nonideal ex-
l9Inviol=y,u, 1dInD/dl=—vypu, (1D ponents also for dimensiond>4, so that there is a
controversy between analytical approaches and simulations.
wherey,=1/8 andyp= 1/4 are computed from Egé}) and  The exponent$14)—(16) differ from those computed in our
(5) atd=4 by extrapolating the regular parts of these equaprevious work[39], which in context of the present paper
tions tod=2. The flow equation for the dimensionless cou-have to be considered as exponents computed to the zero-
pling constanu is obtained from Eqs(11) as loop order of RG.

To conclude, it should be emphasized that the present
approach is a heuristic one. Although we believe that the
arguments stated in this paper give a strong support of the
approach, they cannot of course replace a rigorous consider-
The fixed-point value ofu is obtained from Eq(12) as  ation, which is outstanding. In addition, we want to empha-
u* =(8/5)(4—d). The quantitiedd and» behave according size the following details of the approach, which give a pos-
to Egs.(11) at the fixed point as teriori legitimization of the latter(i) the conversion of the

dependence of the perturbation expansions on the micro-
. N scopic cutoffl, into the crossover lengthh and consequently
D~I77%,  p~ |7 (13 into the critical value\, is accompanied by changing the
pole of the effective coupling constant to a quadratic depen-
The dynamic exponerztis defined by the relatiot~1% The  dence of the latter on the infrared length) the shift of the
use of the relatioh®= vt and the scaling law for given by  critical dimension,d—d,.=4, due to (i), matches with
the second relation in Eq13) yieldsz=2— vy, u*, whichup  1/(4—d) poles in the perturbation expansions, which appear
to the first order in 4-d results in the following expression to be responsible for the nonideal values of the strong-
for the dynamic exponent: coupling exponents.

lgu/dl =(4—d)u—(5/8)u>. (12)
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