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Heuristic approach to the strong-coupling regime of the Kardar-Parisi-Zhang equation

Semjon Stepanow
Universität Halle, Fachbereich Physik, D-06099 Halle/Saale, Germany

~Received 6 May 1996!

We propose a heuristic approach of treating the strong-coupling regime of the Kardar-Parisi-Zhang~KPZ!
equation. The method, which suggests thatduc54 is the upper critical dimension of the KPZ equation, enables
one to use the« expansion belowd54 substrate dimensions to compute the critical exponents in the strong-
coupling regime. We compute the dynamic exponentz and the roughness exponentx to the first order in
«542d asz522(42d)/5 andx5(42d)/5. @S1063-651X~97!50705-7#

PACS number~s!: 05.40.1j, 64.60.Ak, 64.60.Ht, 68.45.2v
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The nonequilibrium dynamics of surfaces continues to
tract large interest over the recent years~for reviews see
@1–4#!. These systems exhibit critical properties similar
those of equilibrium critical phenomena. A phenomenolo
cal equation describing the dynamics of surfaces is
Kardar-Parisi-Zhang~KPZ! equation@5#
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~¹h!21h~x,t !, ~1!

whereh(x,t) is a single-valued function, which describes t
height profile above a basald-dimensional substratex in the
comoving coordinate system,l is responsible for the latera
growth,n0 is the surface tension, and the noiseh(x,t) has a
Gaussian distribution witĥh(x,t)&50, and

^h~x,t !h~x8,t8!&52D0d
d~x2x8!d~ t2t8!. ~2!

Equation~1! is now widely accepted to describe grow
processes such as Eden model, growth by ballistic dep
tion, etc. The KPZ equation is also related to random
stirred fluids~Burgers equation@6#!, dissipative transport in
the driven-diffusion equation@7#, the directed polymer prob
lem in disordered media@8#, and the behavior of flux lines in
superconductors@9#.

The height-height correlation function has ford<2 the
following scaling form:

^„h~x,t !2h~x8,t8!…2&5ux2x8u2x f ~ ut2t8u/ux2x8uz!,
~3!

wherex andz are the roughness and the dynamic expone
respectively. In the rough phase the exponents obey the
ing relationx1z52, which follows from the invariance o
Eq. ~1! with respect to an infinitesimal tilting of the surfac
h→h1ex, x→x1let @5#. For d.2 there are two distinc
regimes. Forl,lc , the interface is smooth, while fo
l.lc it is rough and is expected to obey the scaling law~3!
with the nontrivial roughness exponentx. The scaling behav-
ior for both equilibrium and dynamical phenomena far fro
equilibrium is usually described by using the renormalizat
group ~RG! method. However, RG method fails to descri
the strong-coupling regime of the KPZ equation. The R
analysis of Eq.~1! up to the one-loop order in the vicinity o
d52 yields the effective coupling constant, which increas
under renormalization and seems to make the perturba
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approach useless. The strong-coupling regime is so far
lytically poorly understood~for recent studies see@10–20#!.
References@12,13,18# employ mode-coupling techniques
yield numerical estimates of the dynamical exponents
suggestduc slightly less than four or equals four@18#. Ref-
erences@20# and @19# ~see also@4#, Sec.6.4.IV! suggest that
duc54.

In the present paper we will present a heuristic appro
of treating the strong-coupling regime of the KPZ equati
and will compute the critical exponentsz andx below four
dimensions by using the« expansion to first order in
«542d. The basic idea of this approach is based on
suggestion that the increase of the effective coupling c
stant of Eq.~1!, g.Dl2n0

23, under renormalization in the
vicinity of d52 is due to the fact that ford.2 the critical
value ofl, lc , becomes a relevant quantity. The necess
of generation oflc in treating Eq.~1! is the reason of the
failure of the standard RG technique in handling the stro
coupling regime of the KPZ equation. Ford>2 the pertur-
bation expansions explicitly depend on the ultraviolet cut
l 0. We suggest that this dependence onl 0, which is a local
quantity, is responsible for the appearance of the thresh
valuelc , which is also expected to be a local quantity.
the light of these ideas it is tempting to reorganize the p
turbation expansions so that the cutoff dependence of
perturbation expansions appearing ford>2 will be con-
verted to a threshold of the coupling constant@21#. The ap-
proach proposed consists of two steps. The first step con
in carrying out the renormalization of the perturbation e
pansions in the vicinity ofd52. Using a special matching
condition, which is a heuristic one and is introduced by ha
enables one to reorganize the perturbation expansions
that the pole of the effective coupling constant disappe
Instead to diverge at a finite length, the effective coupli
constant behaves as the square of an infrared length~for
d.2, whenl.lc). This behavior of the effective coupling
constant results, first, in shifting the critical dimension fro
being initially d52 to d54. Second, the effective couplin
constant yields the desired threshold ofl for d.2 and the
expansion parameter in the rough phase becomes pro
tional to l 42d, with l being an infrared length. The secon
step consists in performing the RG analysis of these per
bation series in the vicinity ofd54. The possibility for car-
rying out the« expansion ind,4 substrate dimensions i
R4853 © 1997 The American Physical Society
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due to the fact that~i! the coupling constant does depend
the length asl 42d, and~ii ! the regularized parts of perturba
tion expansions contain 1/(42d) poles. The importance o
1/(42d) poles for the strong-coupling regime was pre
ously emphasized in@16# and @17#. The study of the singu-
larities at 42d and their consequences for the roughen
transition has been treated in@23# within the picture of di-
rected polymer~DP! by using the replica method.

The renormalization prescriptions of the parameters en
ing Eq.~1! can be obtained in a standard manner@6,8,11# and
are

n5n0S 11
22d

4d

G~22d/2!

22d
g0l

22d1••• D , ~4!

D5D0S 11
1

4

1

22d
g0l

22d

1
1

8

G~22d/2!21

12d/2
g0l

22d1••• D , ~5!

l85l, ~6!

where g05@2/(4p)d/2#D0l
2/n0

3. The length l in Eqs. ~4!
and ~5! plays the role of a cutoff at the lower limit of th
integral,*k1/(k

21 l22), appearing in the one-loop correctio
to n andD. Depending on the conditionsl can be identified
with (n0t)

1/2, the inverse external momentum at which t
renormalization is performed, the size of the system, etc

In carrying out the renormalization in the vicinity o
d52 only the second term on the right-hand side of Eq.~5!
has to be taken into account. The result of the integration
the RG equation forD from the cutoffl 0 to the cutoffl m is

D5D0$12@1/~22d!#g0b8~ l m
22d2 l 0

22d!%2gD8 /b8, ~7!

whereb851/4 andgD8 51/4. We note that the effective cou
pling constantg behaves in the same way asD. The ultra-
violet cutoff l 0 introduced in Eq.~7! enables one to exten
Eq. ~7! for d>2.

The crucial point of our approach to treat the stron
coupling regime consists in the use of the following matc
ing condition for the lengthl m in Eq. ~7!:

l m
225 l221 l c

22 , ~8!

wherel is the relevant infrared length of the problem. For
DP in the presence of an extended defect Eq.~8! can be
legitimated in a rigorous way@24#. It is known that in order
to study the critical phenomena by using the RG method
necessary to use a condition~matching condition! giving a
relation between the final lengthl m appearing in the effective
parameters of UV regularized theory and the relevant in
red length of the problem. The information over the infrar
behavior is put always into the matching condition by ha
g

r-

of

-
-

is

-

.

In this sense~8! is a generalized matching condition. Th
form of Eq.~8! is dictated by demanding that the time has
be involved in Eq.~8! as 1/t, due to the fact that at the initia
stage of the growthl 2 is proportional ton0t. This circum-
stance selects Eq.~8! among the more general matching co
dition, l m

2n5 l2n1 l c
22 , n52, 3, . . . ,which, of course, for

nÞ2 would lead to different conclusions. However,nÞ2 is
inconsistent with 1/(42d) poles in Eqs.~4! and~5! as it will
be discussed below. The quantityl c

21 in Eq. ~8! can be iden-
tified with an external momentum, the inverse size of t
system, etc. Equation~8! does not contradict the perturbatio
theory on small scales (l21@ l c

21). When l c
21Þ0, l will be-

come in general irrelevant forl→`. It turns out that a spe-
cial choice ofl c in Eqs.~7! and~8! gives the expected thresh
old for the coupling constant ford.2 and has the
consequence that the lengthl remains relevant forl→`.
Inserting Eq.~8! into Eq. ~7! and demanding that the de
nominator in Eq.~7! behaves linear inl22 for small l22

results in

D52D0 /~g0b8l c
42d!l 2, ~9!

where in deriving Eq.~9! we have taken into account tha
gD8 /b851. The crossover lengthl c is obtained in different
dimensions as

l c5F @~22d!/~b8g0!#
1/~22d!, d,2

l 0exp@1/~b8g0!#, d52

$b8/@~d22!~gc
212g0

21!#%1/~d22!, d.2
G ,

~10!

where gc5@(d22)/b8# l 0
d22 is the threshold value of the

coupling constant. It is supposed that in Eq.~10! for d.2 the
conditiong0.gc is fulfilled.

Due to the use of the matching condition~8!, the UV
regularized perturbation expansions are reorganized in su
way that a threshold of the bare coupling constantg0 con-
trolling the behavior of the interface ford.2 explicitly en-
ters the perturbation expansions. The threshold value of
bare coupling constantgc is determined by the microscopi
cutoff l 0. The effective coupling constantg5l2D/n0

3 be-
haves like D and scales with the infrared length a
g;D; l 2. The quadratic dependence of the coupling co
stant on the lengthl has the consequence that the critic
dimension is shifted tod54. This follows from the consid-
eration of the dimensionless coupling consta
u05(l2D/n0

3) l 22d, which results after using Eq.~9! in
u0.( l / l c)

42d. For g0,gc and d.2 there is no a solution
for l c obeying the condition that the denominator in Eq.~7!
behaves linear inl22 for small l22. This results in irrel-
evancy of the nonlinear term in Eq.~1! for d.2 in the
smooth phaseg0,gc . At the transition,g05gc , the expo-
nents are given byzc52 andxc50 @25–27,11,17#. This is
due to the fact that at the transition the effective coupl
constantu0.( l / l c)

42d is zero, since the crossover lengthl c
is infinite. Slightly above the transition the crossover leng
l c behaves for 2,d,4 according to Eq. ~10! as
l c;ug02gcu21/(d22), which agrees with the behavior of th
correlation length below the transition@25,11#.
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We note that ford.2 the crossover lengthl c and conse-
quently the effective coupling constantu0 has a finite limit
for g0→`. In terms of the DP picture in a disordered m
dium g0 is inversely proportional to the temperature. T
independence ofl c on g0 for largeg0 means that the prop
erties of the surface do not depend sensitively on tempera
at low temperatures, the prediction which is quite natura
be expected@26#.

We now will compute the critical exponents in the stron
coupling regime by using the RG method. From Eqs.~4! and
~5! we see that the regular parts of one loop corrections
n andD contain 1/(42d) poles. Due to this and the circum
stance that the coupling constant behaves asl 42d, it is tempt-
ing to perform the renormalization of the perturbation exp
sions in the vicinity ofd54. Note the consistency of th
shift of the critical dimension due to Eq.~9! to duc54, which
is the consequence of the use of the matching condition~8!,
with the 1/(42d) poles in the perturbation expansion. Th
procedure used depends on the assumption that the cros
to the strong-coupling regime is governed by the poles~4!
and~5! evaluated at the Gaussian fixed point. A careful stu
of the shift 22d→42d and its consequence on the potent
change of the prefactors in front of 1/(42d) poles in Eqs.
~4! and ~5!, which are responsible for the strong-couplin
exponents, is necessary. The effective coupling cons
u0.( l / l c)

42d becomes now the bare coupling constant
the regularized perturbation expansions. According
Eqs.~4!–~6!, the renormalization ofu0 is due to the renor-
malization ofD andn. The renormalized coupling consta
u is expressed throughD and n in the same way asg
through g0, i.e., u.(D/D0)/(n/n0)

3)( l / l c)
42d. The last

term in Eq. ~5! is negative, that means thatD decreases
under renormalization. Taking into account thatn increases
under renormalization, we see that the dimensionless ef
tive coupling constantu has a fixed-point value.

The differential equations of the RG forD and n are
obtained from Eqs.~4! and ~5! as

l ] lnn/] l5gnu, l ] lnD/] l52gDu, ~11!

wheregn51/8 andgD5 1/4 are computed from Eqs.~4! and
~5! at d54 by extrapolating the regular parts of these eq
tions tod>2. The flow equation for the dimensionless co
pling constantu is obtained from Eqs.~11! as

l ]u/] l5~42d!u2~5/8!u2. ~12!

The fixed-point value ofu is obtained from Eq.~12! as
u*5(8/5)(42d). The quantitiesD andn behave according
to Eqs.~11! at the fixed point as

D; l2gDu* , n; l gnu* . ~13!

The dynamic exponentz is defined by the relationt; l z. The
use of the relationl 25nt and the scaling law forn given by
the second relation in Eq.~13! yieldsz522gnu* , which up
to the first order in 42d results in the following expressio
for the dynamic exponent:
re
o

-

to

-

ver

y
l

nt
f
o
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-
-

z522~42d!/5. ~14!

The roughness exponent can be obtained from the rela
x1z52, which is exact, or from the expressio
2x542d2(gD1gn)u* @28#. The result is

x5~42d!/5. ~15!

Theb exponentb5x/z is obtained as

b5~42d!/~61d!. ~16!

The exponents given by Eqs.~14!–~16! are obtained to
order«542d. In d51 Eq.~14! gives the value 1.4, instea
of the exact resultz53/2. The latter is due to the fluctuation
dissipation theorem@29#, which is valid only ind51. From
this we expect that the exponents computed to order« do not
necessarily give the exact value ind51. The situation is to
some extent similar to the problem of the anomalous dif
sion of a Brownian particle in disordered media. The« ex-
pansion@30# does not give ind51 the exact Sinai’s@31#
result. The roughness of the directed polymer,z51/z, gives
in d52 according to Eq.~14! the value 5/8, which agree
well with existing predictions@1# and@4#, Sec.6.4. The value
of theb exponent ind52 (b51/4), which follows from Eq.
~16!, is close to the valueb50.24 obtained in simulations
@32–37#. Taking into account that Eq.~16! is only the «
result, the agreement with simulations has to be conside
as very good. Ind53 Eq. ~16! gives the value 1/9, which is
smaller than the values obtained in numerical simulatio
@33,35#, and that given by the analytical formula of Kim
Kosterlitz @38#. We do not have an explanation for this di
crepancy. Notice that simulations@32,33# give nonideal ex-
ponents also for dimensionsd.4, so that there is a
controversy between analytical approaches and simulati
The exponents~14!–~16! differ from those computed in ou
previous work@39#, which in context of the present pape
have to be considered as exponents computed to the z
loop order of RG.

To conclude, it should be emphasized that the pres
approach is a heuristic one. Although we believe that
arguments stated in this paper give a strong support of
approach, they cannot of course replace a rigorous cons
ation, which is outstanding. In addition, we want to emph
size the following details of the approach, which give a po
teriori legitimization of the latter:~i! the conversion of the
dependence of the perturbation expansions on the mi
scopic cutoffl 0 into the crossover lengthl c and consequently
into the critical valuelc is accompanied by changing th
pole of the effective coupling constant to a quadratic dep
dence of the latter on the infrared length;~ii ! the shift of the
critical dimension,d→duc54, due to ~i!, matches with
1/(42d) poles in the perturbation expansions, which app
to be responsible for the nonideal values of the stro
coupling exponents.
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